Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
2.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Article in English | MEDLINE | ID: covidwho-1478718

ABSTRACT

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Subject(s)
COVID-19/immunology , Computational Biology/methods , Databases, Factual , SARS-CoV-2/immunology , Software , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/virology , Computer Graphics , Cytokines/genetics , Cytokines/immunology , Data Mining/statistics & numerical data , Gene Expression Regulation , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/virology , Protein Interaction Mapping , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology , Viral Proteins/genetics , Viral Proteins/immunology , COVID-19 Drug Treatment
3.
Nucleic Acids Res ; 49(D1): D613-D621, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-1048364

ABSTRACT

WikiPathways (https://www.wikipathways.org) is a biological pathway database known for its collaborative nature and open science approaches. With the core idea of the scientific community developing and curating biological knowledge in pathway models, WikiPathways lowers all barriers for accessing and using its content. Increasingly more content creators, initiatives, projects and tools have started using WikiPathways. Central in this growth and increased use of WikiPathways are the various communities that focus on particular subsets of molecular pathways such as for rare diseases and lipid metabolism. Knowledge from published pathway figures helps prioritize pathway development, using optical character and named entity recognition. We show the growth of WikiPathways over the last three years, highlight the new communities and collaborations of pathway authors and curators, and describe various technologies to connect to external resources and initiatives. The road toward a sustainable, community-driven pathway database goes through integration with other resources such as Wikidata and allowing more use, curation and redistribution of WikiPathways content.


Subject(s)
Databases, Factual , COVID-19/pathology , Data Curation , Humans , Publications , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL